最近在图像染色的作品表明,结构信息在恢复视觉上令人愉悦的结果方面发挥着重要作用。在本文中,我们提出了由基于两个并行发射机的流组成的端到端架构:主流(MS)和结构流(SS)。在SS的帮助下,MS可以产生具有合理结构和现实细节的合理结果。具体地,MS通过同时推断丢失的结构和纹理来重建详细图像,并且SS仅通过从MS的编码器处理分层信息来恢复丢失的结构。通过在培训过程中与SS进行互动,可以暗示MS可以暗示利用结构性提示。为了帮助SS专注于结构并防止MS中的纹理受到影响,提出了一种门控单元来抑制MS和SS之间的信息流中的结构无关激活。此外,SS中的多尺度结构特征映射用于明确指导通过融合块的MS的解码器中的结构合理的图像重建。在Celeba,Paris Streetview和Parume2数据集上进行了广泛的实验表明我们所提出的方法优于最先进的方法。
translated by 谷歌翻译
由于应用程序可用的数据越来越多,因此需要更有能力的学习模型来进行数据处理。我们遇到的数据通常具有某些嵌入式稀疏结构。也就是说,如果它们以适当的基础表示,则它们的能量可以集中于少数基础函数。本文致力于通过深层神经网络(DNN)具有稀疏的正则化具有多个参数的非线性偏微分方程解的自适应近似。指出DNN具有固有的多尺度结构,通过使用多个参数的惩罚来有利于自适应表达功能,我们开发具有多尺度稀疏正则化(SDNN)的DNN,用于有效地表示具有一定单调的功能。然后,我们将提出的SDNN应用于汉堡方程和schr \“ odinger方程的数值解。数值示例确认提出的SDNN生成的溶液稀疏而准确。
translated by 谷歌翻译
虽然现在几个月有多个Covid-19疫苗,但疫苗犹豫不决在美国的高水平。部分内容也已成为政治化,特别是自11月总统选举以来。在包括Twitter的社交媒体背景下,在此期间理解疫苗犹豫不决,可以为计算社会科学家和决策者提供有价值的指导。本文通过相对研究两个不同的时间段(选举前的一个,另一个月之后的另一个月,另一个月)采用相对研究的两个Twitter数据集,而不是研究单一的Twitter语料库,而不是研究单个Twitter语料库。数据收集和过滤方法。我们的研究结果表明,从2020年到2021年秋天的政治到Covid-19疫苗的讨论中讨论了重大转变。通过使用基于集群和机器学习的方法与采样和定性分析,我们发现了几种细粒度疫苗犹豫不决的原因,其中一些随着时间的推移而变得更加(或更少)。我们的结果还强调了去年这个问题的强烈极化和政治化。
translated by 谷歌翻译
由于网络的深度倾向于无穷大,我们探讨了深神经网络与流行的Relu激活函数的收敛。为此,我们介绍了Relu网络的激活域和激活矩阵的概念。通过用激活域上的激活矩阵替换Relu激活函数的应用,我们获得了Relu网络的显式表达。然后,我们将Relu网络的收敛性确定为一类无限矩阵产物的收敛性。研究了这些无限矩阵产物的足够和必要条件。结果,我们为Relu网络建立了必要的条件,即使权重矩阵的顺序收敛到身份矩阵,并且随着Relu网络的深度增加到无穷大,偏置向量的序列会收敛到零。此外,我们从隐藏层的重量矩阵和偏置向量方面获得了足够的条件,以便在深度relu网络的点上收敛。这些结果为图像分类中众所周知的深残留网络的设计策略提供了数学见解。
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
To generate high quality rendering images for real time applications, it is often to trace only a few samples-per-pixel (spp) at a lower resolution and then supersample to the high resolution. Based on the observation that the rendered pixels at a low resolution are typically highly aliased, we present a novel method for neural supersampling based on ray tracing 1/4-spp samples at the high resolution. Our key insight is that the ray-traced samples at the target resolution are accurate and reliable, which makes the supersampling an interpolation problem. We present a mask-reinforced neural network to reconstruct and interpolate high-quality image sequences. First, a novel temporal accumulation network is introduced to compute the correlation between current and previous features to significantly improve their temporal stability. Then a reconstruct network based on a multi-scale U-Net with skip connections is adopted for reconstruction and generation of the desired high-resolution image. Experimental results and comparisons have shown that our proposed method can generate higher quality results of supersampling, without increasing the total number of ray-tracing samples, over current state-of-the-art methods.
translated by 谷歌翻译
Temporal sentence grounding (TSG) aims to identify the temporal boundary of a specific segment from an untrimmed video by a sentence query. All existing works first utilize a sparse sampling strategy to extract a fixed number of video frames and then conduct multi-modal interactions with query sentence for reasoning. However, we argue that these methods have overlooked two indispensable issues: 1) Boundary-bias: The annotated target segment generally refers to two specific frames as corresponding start and end timestamps. The video downsampling process may lose these two frames and take the adjacent irrelevant frames as new boundaries. 2) Reasoning-bias: Such incorrect new boundary frames also lead to the reasoning bias during frame-query interaction, reducing the generalization ability of model. To alleviate above limitations, in this paper, we propose a novel Siamese Sampling and Reasoning Network (SSRN) for TSG, which introduces a siamese sampling mechanism to generate additional contextual frames to enrich and refine the new boundaries. Specifically, a reasoning strategy is developed to learn the inter-relationship among these frames and generate soft labels on boundaries for more accurate frame-query reasoning. Such mechanism is also able to supplement the absent consecutive visual semantics to the sampled sparse frames for fine-grained activity understanding. Extensive experiments demonstrate the effectiveness of SSRN on three challenging datasets.
translated by 谷歌翻译
Representing and synthesizing novel views in real-world dynamic scenes from casual monocular videos is a long-standing problem. Existing solutions typically approach dynamic scenes by applying geometry techniques or utilizing temporal information between several adjacent frames without considering the underlying background distribution in the entire scene or the transmittance over the ray dimension, limiting their performance on static and occlusion areas. Our approach $\textbf{D}$istribution-$\textbf{D}$riven neural radiance fields offers high-quality view synthesis and a 3D solution to $\textbf{D}$etach the background from the entire $\textbf{D}$ynamic scene, which is called $\text{D}^4$NeRF. Specifically, it employs a neural representation to capture the scene distribution in the static background and a 6D-input NeRF to represent dynamic objects, respectively. Each ray sample is given an additional occlusion weight to indicate the transmittance lying in the static and dynamic components. We evaluate $\text{D}^4$NeRF on public dynamic scenes and our urban driving scenes acquired from an autonomous-driving dataset. Extensive experiments demonstrate that our approach outperforms previous methods in rendering texture details and motion areas while also producing a clean static background. Our code will be released at https://github.com/Luciferbobo/D4NeRF.
translated by 谷歌翻译
Deploying reliable deep learning techniques in interdisciplinary applications needs learned models to output accurate and ({even more importantly}) explainable predictions. Existing approaches typically explicate network outputs in a post-hoc fashion, under an implicit assumption that faithful explanations come from accurate predictions/classifications. We have an opposite claim that explanations boost (or even determine) classification. That is, end-to-end learning of explanation factors to augment discriminative representation extraction could be a more intuitive strategy to inversely assure fine-grained explainability, e.g., in those neuroimaging and neuroscience studies with high-dimensional data containing noisy, redundant, and task-irrelevant information. In this paper, we propose such an explainable geometric deep network dubbed as NeuroExplainer, with applications to uncover altered infant cortical development patterns associated with preterm birth. Given fundamental cortical attributes as network input, our NeuroExplainer adopts a hierarchical attention-decoding framework to learn fine-grained attentions and respective discriminative representations to accurately recognize preterm infants from term-born infants at term-equivalent age. NeuroExplainer learns the hierarchical attention-decoding modules under subject-level weak supervision coupled with targeted regularizers deduced from domain knowledge regarding brain development. These prior-guided constraints implicitly maximizes the explainability metrics (i.e., fidelity, sparsity, and stability) in network training, driving the learned network to output detailed explanations and accurate classifications. Experimental results on the public dHCP benchmark suggest that NeuroExplainer led to quantitatively reliable explanation results that are qualitatively consistent with representative neuroimaging studies.
translated by 谷歌翻译
Domain adaptation methods reduce domain shift typically by learning domain-invariant features. Most existing methods are built on distribution matching, e.g., adversarial domain adaptation, which tends to corrupt feature discriminability. In this paper, we propose Discriminative Radial Domain Adaptation (DRDR) which bridges source and target domains via a shared radial structure. It's motivated by the observation that as the model is trained to be progressively discriminative, features of different categories expand outwards in different directions, forming a radial structure. We show that transferring such an inherently discriminative structure would enable to enhance feature transferability and discriminability simultaneously. Specifically, we represent each domain with a global anchor and each category a local anchor to form a radial structure and reduce domain shift via structure matching. It consists of two parts, namely isometric transformation to align the structure globally and local refinement to match each category. To enhance the discriminability of the structure, we further encourage samples to cluster close to the corresponding local anchors based on optimal-transport assignment. Extensively experimenting on multiple benchmarks, our method is shown to consistently outperforms state-of-the-art approaches on varied tasks, including the typical unsupervised domain adaptation, multi-source domain adaptation, domain-agnostic learning, and domain generalization.
translated by 谷歌翻译